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Abstract We synthesized MoO3 nanorods using poly
(vinyl pyrrolidone) (PVP) as a surfactant through the
hydrothermal route for making a cathode for a lithium
battery. Scanning electron microscopy images reveal the
structures to have dimensions on the order of 1–10 μm in
length and 50–200 nm in diameter. Analytical techniques
such as X-ray diffractometry, Fourier transformation infra-
red spectroscopy, thermogravimetric analysis, and cyclic
voltammetry were used to characterize the nanorods. The
measured specific charge of MoO3 nanorods prepared
through a 15-day hydrothermal reaction was 156 mAhg−1

during the initial discharge process.
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Introduction

Many transition metal oxides have been investigated for
possible use as active materials in electrodes for secondary
lithium batteries [1]. Some of the transition metal oxides
have been tested as positive electrodes based on toxicity,

performance, and cost. The molybdenum oxides (MoO3)
have received great attention due to their physical and
chemical properties within the group of transition metal
oxides [2]. Various nanostructures of MoO3 such as
nanobelts, nanowires, nanorods, and nanotubes have been
synthesized using a variety of methods, such as hydrother-
mal treatment, sol–gel process, and chemical vapor depo-
sition [2–4]. Nanostructured MoO3 have potential
applications for lithium batteries [2], smart windows,
catalysts, sensors, and electrochromic devices [5–8].

In the continuing pursuit of preparing organic–inorganic
nanocomposites with superior properties, the inclusion of
conducting polymers in layered hosts and other structurally
organized environments is a topic of substantial interest.
Resulting hybrid nanostructures have the potential of
holding novel structural, mechanical, and electrical proper-
ties [9]. Recently, we have prepared the (MoO3+PVP+
PVA) nanocomposite and its application as an electrode
material for secondary lithium battery [10]. In this system,
we found better cycle stability and lower capacity of the
(MoO3+PVP+PVA) used as a cathode for lithium battery
compared to the MoO3 cathode. However, the morphology
of the (MoO3+PVP + PVA) material changed from nano-
belts to nanoparticles. To examine the change of morphol-
ogy, we report the time-dependent hydrothermal synthesis
of MoO3 nanorods using only PVP as a surfactant.

Experimental

The surfactant-free and MoO3 surfactant(PVP) used 4
and 15 days hydrothermal-treated MoO3 nanorods were
synthesized from their solutions. MoO3·nH2O sols were
prepared by ion exchange of ammonium heptamolybdate
tetrahydrate (NH4)6Mo7O24·4H2O (≥99.0%) through a
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proton exchange resin. After ion exchange, a clear light-
blue MoO3 sol (pH∼2.0) was obtained and modified with
poly(vinyl pyrrolidone) (PVP). The molar ratio of PVP to
MoO3 sol was 0.5. The modified solutions were stirred for
12 h at room temperature and then poured into a Teflon-lined
autoclave and kept at 180 °C for 4 and 15 days in an oven.
After the hydrothermal reaction, the light blue product was
washed with distilled water and dried at 80 °C for 10 h.

Crystallographic information of the samples was inves-
tigated with a Bruker D8 Advance X-ray powder diffraction
(XRD) spectrometer employed with graphite monochrom-
atized Cu Kα radiation (λ=1.54187 Å). The diffraction
data were collected over the 2θ range from 5° to 70°.
Fourier transform infrared (FTIR) absorption spectra of the
nanobelts were recorded using a 60-SXB IR spectrometer
of 4 cm−1 resolution, over a wavenumber range of 400–
4,000 cm−1. The thermal stability of the samples was
studied using thermogravimetric analysis (TGA). The
samples were heated from room temperature to 600 °C at
a rate of 10 °C min−1 on a TA 600 instrument. Raman
spectra were taken under ambient condition by using
Renishaw inVia Raman microscope excited with a
514-nm Ar+ laser. Raman Spectra were taken with 98.5%
accuracy. The morphologies of the resulting products were
characterized using a scanning electron microscope (SEM;
JSM 6390). Cyclic voltammetric (CV) properties of the
nanorods were investigated with a three-electrode cell with
a platinum counter electrode and a silver (Ag) wire
reference electrode. The working electrode, prepared by
mixing 75 wt.% of active material, 20 wt.% of carbon
black, and 5 wt.% of ethylene cellulose, was then coated on
a 1.5-cm2 ITO glass. A solution of 1 M lithium perchlorate
in propylene carbonate was used as the electrolyte, after
purification by recrystallization of lithium perchlorate
(99.99%, Aldrich) and by distillation of propylene carbon-
ate (99.7%, Aldrich), respectively. Cyclic voltammetric
(CV) measurements were carried out between the potential

limits of −1.5 and +0.5 V versus a Ag reference electrode
using a potentiostat/galvanostat (Zahner IM6). The CV
curves were recorded at a scan rate of 10 mV/s.

The electrochemical property of surfactant-free MoO3

and surfactant-used 15 days hydrothermal-treated MoO3

nanorods was measured with a multichannel galvanostat/
potentiostat system (MacPilew with 99% accuracy) by
applying a constant current (0.4 mA/cm2) in the potential
range of 4.0–1.5 V. Electrochemical cells were prepared
using a lithium pellet as the negative electrode, a 1-mol
dm−3 solution of LiPF6 in ethylene carbonate (EC)/
dimethyl carbonate (DMC) as an electrolyte, a pellet made
of the nanorods, acetylene black, and PTFE in a 75:20:05
weight ratio as a positive electrode.

Results and discussion

The XRD pattern of MoO3 nanorods is shown in Fig. 1. All
the peaks are indexed to α-MoO3 [JCPDS card No.
05-0508] with lattice constants a=3.962 Å, b=13.858 Å,
and c=3.697 Å. The strong diffraction peaks of (020),
(040), and (060) planes reveal a layered crystal structure or
a highly anisotropic growth of the oxides [2]. The
surfactant-used 4 and 15 days hydrothermal-treated MoO3

nanorods are shown in Fig. 1. In the surfactant-used MoO3

nanorods, we observed a decrease in the (020) peak
intensity and an increment in the FWHM of the peak and
(110), (021) peak intensities are increased for 15-days
hydrothermal-treated nanorods.

FTIR patterns of surfactant-free MoO3 and the surfactant
used 15-days hydrothermal-reacted MoO3 nanorods are
shown in Fig. 2. In the case of surfactant-free MoO3

nanorods, the band at 1,000 cm−1 can be assigned to the
stretching mode of Mo-terminal oxygen, and bands at 872
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Fig. 2 FTIR spectra of the surfactant used MoO3 nanorods
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and 578 cm−1 can be assigned to the stretching vibrations of
the O(3) and O(2) atoms linked to two or three Mo atoms,
respectively [11]. The positions of all three bands are
shifted toward the lower wavenumbers side in the surfac-
tant used 15 days hydrothermal reacted MoO3 nanorods
due to increasing of the layer distance in MoO3.

Raman spectroscopy was used to characterize the
orthorhombic MoO3 structure through weak Raman signals
at 664 and 820 cm−1 corresponding to the stretching modes
ν(O-Mo-O; Fig. 3a). The Raman peaks of the surfactant-
used 15-days hydrothermal-reacted MoO3 nanorods
(Fig. 3b) shifted toward lower wavenumbers. The most
notable change of the bending mode δ (O-Mo-O) was in the
range of 120 to 220 cm−1. Both FTIR and Raman spectra
confirm that the stretching modes shift toward the lower
wavenumbers when PVP was used as a surfactant to
prepare MoO3 nanorods.
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Fig. 4 TGA curves of the surfactant used MoO3 nanorods
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Fig. 5 SEM images of (a) MoO3, (b) MoO3+PVP(4 days), (c) MoO3+
PVP (15 days) nanorods
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Thermal stability of the surfactant-free and MoO3

surfactant-used 4 and 15 days hydrothermal-treated MoO3

nanorods is shown in Fig. 4. MoO3 nanorods exhibits
<0.5% weight loss, indicating the completeness of the
decomposition of the MoO3 sol during the hydrothermal
treatment at 180 °C. Two weight loss curves are observed
in surfactant-used 4 and 15 days hydrothermal-treated
MoO3 nanorods. The first weight loss corresponds to the
release of water and the second one to the decomposition of
surfactant.

SEM photographs of the surfactant-free and MoO3

surfactant-used 4 and 15 days hydrothermal-reacted MoO3

nanorods are shown in Fig. 5. Figure 5a shows individual
nanorods with diameters ranging from 10 to 100 nm and
length 1–5 µm. Figure 5b shows the surfactant-used 4 days
hydrothermal-reacted MoO3 nanorods with the width of
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Fig. 6 (a) TEM image of MoO3+PVP(15 days) nanorod, (b)
HRTEM image of MoO3+PVP(15 days) nanorod
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Fig. 7 Cyclic voltammograms (CVs) curves of the surfactant used
MoO3 nanorods
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100 nm and several micrometers in length. The surfactant
used 15 days hydrothermal-reacted MoO3 nanorods
(Fig. 5c) well crystallized and grew longer with a typical
length of 6 µm and diameter ranging from 5 to 100 nm. The
sample prepared without PVP was very similar to the
nanofibers with different diameters along the b-axis, and
the side faces of the products were not smooth. Figure 5b, c
shows that, in PVP used samples, assembled nanorods were
obtained with uniform diameter and smooth lateral surfaces.
The addition of PVP is a vital factor in the morphology. In
the MoO3/PVP systems, the PVP acts as a template
surfactant in forming a chain structure. The MoO3 may
rise up along the chains to form MoO3 nanorods. On the
other hand, the PVP forms a shell surrounding the particles
to avoid them from grain growth as a consequence of its
steric effect. As a result, monodispersed MoO3 nonorods
were finally obtained [12, 13].

TEM image of 15 days hydrothermal-treated MoO3

single nanorod is shown in Fig. 6a. Figure 6b shows a high-
resolution transition electron microscopy (HRTEM) image
with two sets of parallel fringes, normal to each other, and
with the spacing of 0.385 and 0.346 nm, corresponding to
(110) and (040) planes of orthorhombic structure MoO3.

The cyclic voltammograms (CVs) of the MoO3 nanorods
and surfactant-used 4 and 15 days hydrothermal-treated
MoO3 nanorods are shown in Fig. 7. The CVs of MoO3

nanorods and surfactant-used 4 and 15 days hydrothermal-
treated MoO3 nanorods exhibit two broad cathodic bands at
−0.5 and −1.04, −0.45 and −0.87, −0.94 and −0.41 V and
one broad anodic band at −0.57, −0.53, and –0.62 V,
respectively, which are attributed to the lithium ion
insertion to and exclusion from the MoO3 nanorod
electrode materials.

The first discharge curve for the surfactant-free MoO3,
the surfactant-used 15 days hydrothermal-treated MoO3

nanorods are shown in Fig. 8. The discharge capacity of the
surfactant-used 15 days hydrothermal-treated MoO3 nano-
rods battery (158 mAhg−1 in the potential range of 3.45 to
1.5 V) is lower than that of the surfactant-free MoO3

nanorod batteries (270 mAhg−1 in the potential range of
3.25 to 1.5 V). The decreased capacity in the surfactant-
used 15 days hydrothermal-treated MoO3 nanorods battery
might be due to a decreased average molybdenum
oxidation state or due to the amorphous nature of cathode
materials [10].

Figure 9 shows the charge–discharge cycles of the
surfactant-free MoO3 and the surfactant-used 15 days
hydrothermal-treated MoO3 nanorods batteries for ten
cycles. The specific discharge capacity of the surfactant-
free MoO3 battery after ten cycles was 240 mAhg−1, and

the cell exhibited a capacity loss of 11%, demonstrating
good cycle stability. The specific discharge capacity of the
surfactant-used 15 days hydrothermal-treated MoO3 nano-
rods battery after ten cycles was 149 mAhg−1 and capacity
loss was 5%.

Conclusion

The surfactant-free and the surfactant-used, 4 and 15 days
hydrothermal-treated MoO3 nanorods were successfully
synthesized by hydrothermal process. The electrochemical
measurements show that the surfactant-free MoO3 nanorods
have higher specific charge capacity than the surfactant-
used, 15 days hydrothermal-treated MoO3 nanorods.
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